Programación Lineal

PROGRAMACION LINEAL

Un modelo de Programación Lineal (PL) considera que las variables de decisión tienen un comportamiento lineal, tanto en la función objetivo como restricciones del problema. En este sentido, la Programación Lineal es una de las herramientas más utilizadas en la Investigación Operativa debido a que por su naturaleza se facilitan los cálculos y en general permite una buena aproximación de la realidad.

Es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función objetivo, también lineal.

Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.

 

ORIGEN

El problema de la resolución de un sistema lineal de inecuaciones se remonta, al menos, a Joseph Fourier, después de quien nace el método de eliminación de Fourier-Motzkin. La programación lineal se plantea como un modelo matemático desarrollado durante la segunda guerra mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria.

 

PROPIEDADES Y CARACTERISTICAS.

La programación lineal utiliza un modelo matemático para descubrir el problema. El adjetivo lineal significa que todas las funciones matemáticas del modelo deben ser funciones lineales. En este caso, la palabra programación no se refiere a programación en computadoras; en esencia es un sinónimo de planeación. Así, la programación lineal trata de planeación de las actividades para obtener un resultado optimo, esto es, el resultado que mejor alcance la meta especificada (según el modelo matemático) entre todas alternativas de solución.

Aunque la asignación de recursos a las actividades es la aplicación más frecuente la programación lineal tiene muchas otras posibilidades. De hecho, cualquier problema cuyo modelo matemático se ajuste al formato general del modelo de programación lineal es un problema de programación lineal. Aun más, se dispone de un procedimiento de solución extraordinariamente eficiente llamado método simple, para resolver estos problemas incluso los de gran tamaño. Estos son algunas causas del tremendo efecto de la programación lineal en las últimas décadas.

 

APLICACIÓN.

La programación lineal constituye un importante campo de la optimización por varias razones, muchos problemas prácticos de la investigación de operaciones pueden plantearse como problemas de programación lineal. Algunos casos especiales de programación lineal, tales como los problemas de flujo de redes y problemas de flujo de mercancías se consideraron en el desarrollo de las matemáticas lo suficientemente importantes como para generar por si mismos mucha investigación sobre algoritmos especializados en su solución. Una serie de algoritmos diseñados para resolver otros tipos de problemas de optimización constituyen casos particulares de la más amplia técnica de la programación lineal. Históricamente, las ideas de programación lineal han inspirado muchos de los conceptos centrales de la teoría de optimización tales como la dualidad, la descomposición y la importancia de la convexidad y sus generalizaciones. La teoría de la programación lineal reduce drásticamente el número de posibles soluciones óptimas que deben ser revisadas.

otros metodos de aplicación podemos analizarlos en los siguientes casos:

  • Optimización de la combinación de cifras comerciales en una red lineal de distribución de agua.
  • Aprovechamiento óptimo de los recursos de una cuenca hidrográfica, para un año con afluencias caracterizadas por corresponder a una determinada frecuencia.
  • Soporte para toma de decisión en tiempo real, para operación de un sistema de obras hidráulicas;
  • Solución de problemas de transporte.

 

 

 

 

 

TIPOS DE PROBLEMAS

1. Problema de la Dieta:  Consiste en determinar una dieta de manera eficiente, a partir de un conjunto dado de alimentos, de modo de satisfacer requerimientos nutricionales. La cantidad de alimentos a considerar, sus características nutricionales y los costos de éstos, permiten obtener diferentes variantes de este tipo de modelos. Por ejemplo:

 

Leche

(lt)

Legumbre

(1 porción)

Naranjas

(unidad)

Requerimientos

Nutricionales

Niacina

3,2

4,9

0,8

13

Tiamina

1,12

1,3

0,19

15

Vitamina C

32

0

93

45

Costo

2

0,2

0,25

 

 

Variables de Decisión:

  • X1: Litros de Leche utilizados en la Dieta
  • X2: Porciones de Legumbres utilizadas en la Dieta
  • X3: Unidades de Naranjas utilizadas en la Dieta

Función Objetivo: (Minimizar los Costos de la Dieta) Min 2X1 + 0,2X2 + 0,25X3

Restricciones: Satisfacer los requerimientos nutricionales

  • Niacina: 3,2X1 + 4,9X2 + 0,8X3 >= 13
  • Tiamina: 1,12X1 + 1,3X2 + 0,19X3 >=15
  • Vitamina C: 32X1 + 0X2 + 93X3 >= 45
  • No Negatividad: X1>=0; X2>=0; X3>=0

 

|

Comentarios

Escribe un comentario

¿Quieres usar tu foto? - Inicia tu sesión o Regístrate gratis »
Comentarios de este artículo en RSS

Comentarios recientes

  • No hay comentarios recientes
Cerrar